The Crystal Structure of $\mathrm{K}_{2} \mathrm{SeO}_{4}$

By A. Kálmán,* J. S. Stephens \dagger and D. W.J.Cruickshank
Department of Chemistry, University of Manchester Institute of Science and Technology, Manchester M60 1QD, England

(Received 27 October 1969)

Abstract

Potassium selenate crystallizes in the orthorhombic space group Pnam with $a=7.661 \pm 0.004, b=$ $10.466 \pm 0.008, c=6.003 \pm 0.003 \AA$. Refinement of the structure, which is isomorphous with $\beta-\mathrm{K}_{2} \mathrm{SO}_{4}$, has been carried out by the method of least squares with anisotropic vibrational parameters. R decreased to 4.8% for 334 independent reflexions measured on an automatic diffractometer. The structure is built of fairly regular SeO_{4}^{2-} tetrahedra, with a mean vibrationally-corrected $\mathrm{Se}-\mathrm{O}$ bond length of $1.648 \pm 0.010 \AA$, and K^{+}cations in two different oxygen environments.

Introduction

The crystal structure studies of the orthoselenates in the literature are mostly limited to the determination of the crystal data, which indicate, however, the important fact that their structures are generally isomorphous with those of the corresponding sulphates (Aurivillius \& Malmros, 1961 ; Gattow, 1960, 1962; Kokkoros, 1938; Madar, 1960; Pistorius, 1966; Pistorius \& Pistorius, 1962). Only a few structure analyses have been completed: $\mathrm{H}_{2} \mathrm{SeO}_{4}$ (Bailey \& Wells, 1951), $\mathrm{Na}_{2} \mathrm{SeO}_{4}$ (Náray-Szabó \& Argay, 1963) and $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{SeO}_{4}$ (Morosin, 1969). There is also the structure determination of $\mathrm{Se}_{4} \mathrm{O}_{12}$ (Mijlhoff, 1965). These results, limited in number and accuracy, indicate the need for further determinations of selenate structures in order to improve the understanding of bonding in tetrahedral oxyanions.

The lattice parameters of $\mathrm{K}_{2} \mathrm{SeO}_{4}$ were originally determined by Koch-Holm \& Schönfeldt (1927). In their description of the orthorhombic $\mathrm{K}_{2} \mathrm{CrO}_{4}$, Zachariasen \& Ziegler (1931) listed $\mathrm{K}_{2} \mathrm{SeO}_{4}$ as one of several crystals isomorphous with $\beta-\mathrm{K}_{2} \mathrm{SO}_{4}$. This was confirmed by Gattow (1962) who deduced the space group Pnam, in agreement with that of $\beta-\mathrm{K}_{2} \mathrm{SO}_{4}$ (Robinson, 1958).

Experimental

The crystals of $\mathrm{K}_{2} \mathrm{SeO}_{4}$ obtained from the aqueous solution of a $\mathrm{BDH} \ddagger$ product evaporated slowly at room temperature were thin, but rather large plates. From one of these plates an almost cylindrical needle, 0.8 mm long with an average diameter of 0.1 mm was carefully shaped. In terms of the axes chosen by Gattow (1962) the needle axis is $a . \mathrm{K}_{2} \mathrm{SeO}_{4}$ crystals, similarly to

[^0]others which have a $\beta-\mathrm{K}_{2} \mathrm{SO}_{4}$ type of structure (Sasvári, 1963), show an almost hexagonal pseudo-symmetry, with $b: c=1 \cdot 7437 \simeq \sqrt{ }$. Thus care was needed to get the correct crystal orientation on the four-circle goniometer. For the correct orientation, according to the 0 kl Weissenberg diagram, the intensity of the $080 \mathrm{re}-$ flexion should be considerably higher than that of 044 , which corresponds to 080 in the pseudo-unit cell.

Data were collected on a Hilger \& Watts automatic four-circle diffractometer in the equi-inclination arrangement. Integrated intensities were measured for $\theta \leq 56^{\circ}$ by the $\theta-2 \theta$ scanning method using $\mathrm{Cu} K \alpha$ radiation and a scintillation counter with an Ni filter and pulse height discrimination. Each reflexion was integrated in eighty steps of 0.01°. In consequence of a slight, but systematic error in the geometry of the four-circle goniometer, which could not be completely eliminated, the $h k 0$ reflexions had to be remeasured with a revised orientation matrix. The observed structure factors were derived from the integrated intensities in a data reduction program, which also corrected for the variation in the integrated intensity of a standard reflexion (111) measured at frequent intervals during the data collection. Correction was made for absorption $(\mu R=1 \cdot 3)$ by the method described for cylindrical crystals in International Tables for X-ray Crystallography (1962). 362 independent reflexions were measured, of which 14 were below threshold and have not been included in the refinement. The lattice parameters given by Gattow (1962) were refined from measurement of diffraction angles on the diffractometer.

Crystal data

$\mathrm{K}_{2} \mathrm{SeO}_{4} . M=221 \cdot 15$. Orthorhombic $a=7 \cdot 661 \pm 0 \cdot 004$, $b=10.466 \pm 0.008, c=6.003 \pm 0.003 \AA$;
$V=481.32 \AA^{3}, Z=4, D_{c}=3.052 \mathrm{~g} . \mathrm{cm}^{-3}$, $D_{x}=3.032 \mathrm{~g} . \mathrm{cm}^{-3}, F(000)=416$.
Space group Pnam (no. 62). μ for $\mathrm{Cu} K \alpha(\lambda=1 \cdot 5418 \AA) 263 \cdot 7 \mathrm{~cm}^{-1}$.

Structure determination and refinement

A model of the structure set up on the basis of that for $\beta-\mathrm{K}_{2} \mathrm{SO}_{4}$ (Robinson, 1958) and for $\mathrm{K}_{2} \mathrm{CrO}_{4}$ (Zachariasen \& Ziegler, 1931) was refined by a full-matrix least-squares program written by J. S. Stephens for the ATLAS computer. The form factors for neutral selenium and oxygen atoms and for K^{+}were taken from International Tables for X-ray Crystallography (1962). Three cycles of refinement of coordinates and individual isotropic vibrational parameters together with two scale factors, one for $h k l$ and another for $h k 0$, reduced the residual $R=\left(\sum \Delta\right) /\left(\Sigma\left|k F_{o}\right|\right)$ to $9 \cdot 0 \%$. At this stage 12 of the $h k 1$ reflexions with indices $h \geq 5, k \geq 4$, together with the reflexions 752 and 742 , had to be rejected as unreliable. The intensities of these reflexions were evidently affected by the error in the geometry of the four-circle goniometer.

The refinement was then continued with anisotropic vibration parameters for all atoms. A correction parameter for secondary extinction was also refined. Four cycles reduced R to $4 \cdot 9 \%$ and $R^{\prime}=\left[\sum w \Delta^{2}\right) /$ $\left(\sum w\left|k F_{o}\right|^{2}\right)^{1 / 2}$ to $6 \cdot 4 \%$. Complex scattering factors were then introduced for the correction of the anomalous dispersion, which was expected to be significant for the $\mathrm{Se}\left(\Delta f^{\prime}=-1 \cdot 0, \Delta f^{\prime \prime}=1 \cdot 1\right)$ and $\mathrm{K}\left(\Delta f^{\prime}=0 \cdot 0\right.$, $\Delta f^{\prime \prime}=1 \cdot 1$) atoms. Two further cycles, with a weighting scheme

$$
w=\left(3 \cdot 0-0 \cdot 167\left|F_{0}\right|+0 \cdot 005\left|F_{0}\right|^{2}\right)^{-1}
$$

reduced the residuals to the final $R=4.8$ and $R^{\prime}=6 \cdot 2 \%$.
The $\left|F_{o}\right|$ and final $\left|F_{c}\right|$ values are given in Table 1 , and the final parameters in Tables 2 and 3.

Table 1. Observed and calculated structure factors
The last two columns show $10\left|F_{o}\right|$ and $10\left|F_{c}\right|$. An asterisk indicates an unreliable reflexion omitted from the refinement.

Table 2. Coordinates with their e.s.d.'s

	x / a	y / b	z / c
Se	$0.2242(2)$	$0.4200(1)$	$\frac{1}{4}$
$\mathrm{~K}(1)$	$0.1705(5)$	$0.0843(3)$	$\frac{1}{4}$
$\mathrm{~K}(2)$	$-0.0057(4)$	$-0.2905(3)$	$\frac{1}{4}$
$\mathrm{O}(1)$	$0.2931(10)$	$0.3471(6)$	$0.0271(10)$
$\mathrm{O}(2)$	$0.3024(16)$	$-0.4356(8)$	$\frac{1}{4}$
$\mathrm{O}(3)$	$0.0126(21)$	$0.4251(10)$	$\frac{1}{4}$

Owing to the large thermal vibration of the oxygen atoms (Table 3) a rigid-body vibration analysis and coordinate corrections were carried out on the SeO_{4} tetrahedron by the method of Cruickshank (1956,

Fig. 1. Projection of the structure along [001]. Potassium atoms are shown by large circles, oxygen atoms by smaller open circles, and selenium atoms by small full circles. For numbering of atoms see Table 5. Tetrahedra are labelled by capital letters and may be identified also in Fig. 2. Pairs of dashed lines indicate contacts to a pair of atoms in the same tetrahedron. A dashed line paired with a dash-dot line indicates that the pair of superposed atoms are in different tetrahedra.

Table 3. Vibration parameters with their e.s.d.'s $\left(\AA^{2}\right)$

	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Se	$0.0125(11)$	$0.0160(10)$	$0.0172(10)$	$-0.0006(4)$	0	0
$\mathrm{~K}(1)$	$0.0164(19)$	$0.0295(17)$	$0.0283(16)$	$0.0032(11)$	0	0
$\mathrm{~K}(2)$	$0.0135(15)$	$0.0198(15)$	$0.0264(16)$	$0.0002(11)$	0	0
$\mathrm{O}(1)$	$0.0474(43)$	$0.0417(36)$	$0.0239(35)$	$0.0132(31)$	$0.0060(31)$	$-0.0107(31)$
$\mathrm{O}(2)$	$0.0373(70)$	$0.0213(49)$	$0.0465(60)$	$-0.0090(41)$	0	0
$\mathrm{O}(3)$	$0.0389(83)$	$0.0583(75)$	$0.0584(72)$	$-0.0088(52)$	0	0

Table 4. Interatomic distances and bond angles for the SeO_{4} group

		Uncorrected	Corrected	
	$\mathrm{Se}-\mathrm{O}(1)$	$1.628 \AA$	1.649 (6) \AA	
	$\mathrm{Se}-\mathrm{O}\left(1^{\prime}\right)$	$1 \cdot 628$	1.649 (6)	
	$\mathrm{Se}-\mathrm{O}(2)$	1.625	1.644 (9)	
	$\mathrm{Se}-\mathrm{O}(3)$	$1 \cdot 622$	$1 \cdot 648$ (16)	
$\mathrm{O}(1) \cdots \mathrm{O}\left(1^{\prime}\right)$	2.676 (9) \AA		$\mathrm{O}(1)-\mathrm{Se}-\mathrm{O}\left(1^{\prime}\right)$	$110.50(0.37)^{\circ}$
$\mathrm{O}(1) \cdots \mathrm{O}(2)$	$2 \cdot 640$ (10)		$\mathrm{O}(1)-\mathrm{Se}-\mathrm{O}(2)$	108.43 (0.33)
$\mathrm{O}(1) \cdots \mathrm{O}(3)$	$2 \cdot 660$ (15)		$\mathrm{O}(1)-\mathrm{Se}-\mathrm{O}(3)$	109.84 (0.34)
$\mathrm{O}\left(1^{\prime}\right) \cdots \mathrm{O}(2)$	2.640 (10)		$\mathrm{O}\left(1^{\prime}\right)-\mathrm{Se}-\mathrm{O}(2)$	108.43 (0.33)
$\mathrm{O}\left(1^{\prime}\right) \cdots \mathrm{O}(3)$	$2 \cdot 660$ (15)		$\mathrm{O}\left(1^{\prime}\right)-\mathrm{Se}-\mathrm{O}(3)$	109.84 (0.34)
$\mathrm{O}(2) \cdots \mathrm{O}(3)$	$2 \cdot 656$ (19)		$\mathrm{O}(2)-\mathrm{Se}-\mathrm{O}(3)$	109.76 (0.59)

1961). The calculations were performed on the ATLAS computer using a program written by J. S. Stephens. The corrections to the bond lengths are quite considerable, ranging from 0.019 to $0.026 \AA$. Table 4 gives the uncorrected and corrected bond lengths, the oxygenoxygen distances and the bond angles with their estimated standard deviations. The uncorrected potassiumoxygen distances are given in Table 5.

Table 5. Potassium-oxygen interatomic distances
The coordinates are given in accordance with the parameters shown in Table 2 and Figs. 1 and 2.

$\mathrm{K}(1)(x, y, z)$				
O [I]	$\mathrm{O}(1)$		$y, \quad z)$	$3 \cdot 20 \AA$
O [II]	$\mathrm{O}(1)$		$\left.y, \frac{1}{2}-z\right)$	$3 \cdot 20$
O[III]	O(1)	($-\frac{1}{2}+x$,	$\left.\frac{1}{2}-y, \frac{1}{2}-z\right)$	$3 \cdot 26$
O[IV]	O(1)	($-\frac{1}{2}+x$,	$\left.\frac{1}{2}-y, \quad z\right)$	$3 \cdot 26$
O[V]	O(1)	($\frac{1}{2}-x$,	$\left.\frac{1}{2}+y, \frac{1}{2}+z\right)$	3.00
O[VI]	$\mathrm{O}(1)$	($\frac{1}{2}-x$,	$\left.\frac{1}{2}+y,-z\right)$	3.00
O[VII]	O(2)	$\left(-\frac{1}{2}+x\right.$,	$\left.\frac{1}{2}-y, \frac{1}{2}-z\right)$	3.23
O[VIII]	$\mathrm{O}(2)$	($\frac{1}{2}-x$,	$\left.\frac{1}{2}+y, \frac{1}{2}+z\right)$	3.02
O[IX]	$\mathrm{O}(2)$	($\frac{1}{2}-x$,	$\left.\frac{1}{2}+y,-z\right)$	3.02
$\mathrm{O}[\mathrm{X}]$	$\mathrm{O}(3)$	$\left(\frac{1}{2}+x\right.$,	$\left.\frac{1}{2}-y, \frac{1}{2}-z\right)$	2.64
O[XI]	O(3)	(x,	$y, z)$	3.76
$\mathrm{K}(2)(x, 1+y, z) \ldots$				
O[XII]	$\mathrm{O}(1)$	$-x$,	$-y, \quad-z)$	$2.83 \AA$
O[XIII]	O(1)	$-x$,	$\left.-y, \frac{1}{2}+z\right)$	$2 \cdot 83$
$\mathrm{O}\left[\mathrm{V}^{\prime}\right]$	O(1)	$\frac{1}{2}-x$,	$\left.\frac{1}{2}+y, \frac{1}{2}+z\right)$	2.73
O[VI']	O(1)	$\frac{1}{2}-x$,	$\left.\frac{1}{2}+y,-z\right)$	2.73
O[XIV]	$\mathrm{O}(2)$	(x,	$1+y, \quad z)$	2.80
O[VII']	$\mathrm{O}(2)$	($-\frac{1}{2}+x$,	$\left.\frac{1}{2}-y, \frac{1}{2}-z\right)$	2.79
$\mathrm{O}[\mathrm{XI}]$	$\mathrm{O}(3)$		y, z)	2.98
O[XV]	$\mathrm{O}(3)$	($-x$,	$-y,-z)$	$3 \cdot 32$
O[XVI]	O(3)	$-x$,	$\left.-y, \frac{1}{2}+z\right)$	$3 \cdot 32$

Discussion

The two kinds of potassium ion have different environments (Table 5 and Figs. 1 and 2). $\mathrm{K}(1)$ is surrounded by 11 oxygen atoms. One of them is at a
rather long distance $(3.76 \AA$) but geometrically it seems to belong to the environment of $K(1)$. This oxygen atom, O[XI], and two others, O[VII] and O[X], form an almost regular triangle (O[VII]-O[X] $=5 \cdot 44$, $\mathrm{O}[\mathrm{VII}]-$ $\mathrm{O}[\mathrm{XI}]=5 \cdot 47, \mathrm{O}[\mathrm{X}]-\mathrm{O}[\mathrm{XI}]=5 \cdot 30 \AA$) around the potassium ion on the common mirror plane at $z=\frac{1}{4}$. The other eight oxygen atoms form two mirror-related irregular tetrahedra surrounding the potassium ion. The planes formed by $\mathrm{O}[\mathrm{II}], \mathrm{O}[\mathrm{III}]$ and $\mathrm{O}[\mathrm{V}]$ and by $\mathrm{O}[\mathrm{II}$, $\mathrm{O}[\mathrm{IV}]$ and $\mathrm{O}[\mathrm{VI}]$ are almost parallel to the mirror plane ($\varepsilon=4 \cdot 5^{\circ}$), while the fourth members of these tetrahedra, O[IX] and O[VIII], are almost above and under the potassium ion at distances of $z= \pm 0 \cdot 5$. Thus the 11 oxygen atoms form a nearly spherical environment for $\mathrm{K}(1)$. The other potassium ion $\mathrm{K}(2)$ has only 9 oxygen atoms in its neighbourhood. Three oxygen atoms, $\mathrm{O}\left[\mathrm{VII}^{\prime}\right], \mathrm{O}[\mathrm{XI}]$ and $\mathrm{O}[\mathrm{XIV}]$, share the mirror plane with $\mathrm{K}(2)$, while three, $\mathrm{O}\left[\mathrm{V}^{\prime}\right], \mathrm{O}[\mathrm{XIII}]$ and $\mathrm{O}[\mathrm{XV}]$, are above and three, $\mathrm{O}\left[\mathrm{VI}^{\prime}\right], \mathrm{O}[\mathrm{XII}]$ and $\mathrm{O}[\mathrm{XVI}]$ are below in a rather irregular arrangement. The average potassium-oxygen distance of $2.93 \AA$ for $\mathrm{K}(2)$ is significantly shorter than the average of $3 \cdot 14 \AA$ for $K(1)$.

The SeO_{4}^{2-} anion is an almost regular tetrahedron within e.s.d.'s. The mean value of the vibrationally corrected $\mathrm{Se}-\mathrm{O}$ bond lengths is $1 \cdot 648 \pm 0.010 \AA$. This is in a good agreement with the mean value in $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{SeO}_{4}$, which was originally given by Morosin (1969) as $1 \cdot 635 \pm 0.008 \AA$ but increases to $1.643 \AA$ on vibrational correction. A similar but less accurate value of $1.654 \pm 0.021 \AA$ was found in $\mathrm{Na}_{2} \mathrm{SeO}_{4}$ (Kálmán \& Cruickshank, 1969; Náray-Szabó \& Argay, 1963). In $\mathrm{Se}_{4} \mathrm{O}_{12}$ (Mijlhoff, 1965) the $\mathrm{Se}-\mathrm{O}$ distances involving the bridging oxygen atoms are 1.75 and 1.80 , and for the non-bridging oxygen atoms 1.54 and $1.56 \AA$ (e.s.d.'s. $\simeq 0.013 \AA$); however the mean value of $1.66 \AA$ is similar to those in the orthoselenates. The hypo-

Fig. 2. Projection of the structure along [100]. See caption to Fig. 1 for explanations.
thetical Se-O single bond is presumably about $1.85 \AA$, which indicates that in the orthoselenates the $\mathrm{Se}-\mathrm{O}$ bond has multiple-bond character.

In each orthoselenate the $\mathrm{O}-\mathrm{Se}-\mathrm{O}$ angles are close to the regular tetrahedral value, especially in $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{SeO}_{4}$, where the root-mean-square deviation is only $0 \cdot 13^{\circ}$.

The authors would like to express their thanks to Dr B. A. Pethica, research director, and Dr B. Duffin of the Unilever Research Laboratory at Port Sunlight for the use of the Hilger \& Watts automatic four-circle diffractometer and for invaluable help in the data collection. A.K. wishes to acknowledge the financial support of the Scientific Research Council and J.S.S. the award of a fellowship from the National Research Council of Canada.

References

Aurivillius, K. \& Malmros, B. (1961). Acta Chem. Scand. 15, 1932.

Bailey, M. \& Wells, A. F. (1951). J. Chem. Soc. p. 968. Cruickshank, D. W. J. (1956). Acta Cryst. 9, 757.
Cruickshank, D. W. J. (1961). Acta Cryst. 14, 896.
Gattow, G. (1960). Naturwissenschaften, 47, 442.
Gattow, G. (1962). Acta Cryst. 15, 419.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Kálmán, A. \& Cruickshank, D. W. J. (1970). Acta Cryst. B26, 436.
Koch-Holm, E. \& Schönfeldt, N. (1927). Wiss. Veröff. Siemens, 6, 177.
Kokkoros, P. (1938). Prakt. Akad. Athen. 13, 337.
Maďar, J. (1960). Czech. J. Phys. 10, 259.
Mijlhoff, F. C. (1965). Acta Cryst. 18, 795.
Morosin, B. (1969). Acta Cryst. B25, 19.
Náray-Szabó, I. \& Argay, G. (1963). Acta Chim. Hung. 39, 85.

Pistorius, C. W. (1966). Z. anorg. allg. Chem. 347, 223. Pistorius, C. W. \& Pistorius, M. C. (1962). Z. Kristallogr. 117, 259.
Robinson, M. T. (1958). J. Phys. Chem. 62, 925.
Sasvári, K. (1963). Acta Cryst. 16, 719.
Zachariasen, W. H. \& Ziegler, G. E. (1931). Z. Kristallogr. 80, 164.

[^0]: * Permanent address: Central Research Institute for Chemistry, Hungarian Academy of Sciences, Budapest, Hungary.
 \dagger Present address: Data Processing \& Computing Centre, McMaster University, Hamilton, Ontario, Canada.
 \ddagger British Drug Houses.

